
▌Geometrical Engineering of Nearly Fully Cation-Selective 2D Angstrom-Scale Ionic Diode Membranes for Highly Efficient Osmotic Energy Conversion
幾何工程設計之近乎全陽離子選擇性二維埃米級離子二極體膜於高效滲透能量轉換之應用
Amalia Rizki Fauziah, Rathi Aparna, Fery Prasetyo, Kalon Gopinadhan and Li-Hsien Yeh*
https://doi.org/10.1039/D4TA08491H
SEED Member: Li-Hsien Yeh

Schematic illustration
Major Contributions
1. Development of Asymmetric 2D Angstrom-Scale Ionic Diode Membranes with Enhanced Rectification
A strategy was established to fabricate two-dimensional (2D) lamellar sub-nanofluidic membranes (MXA membranes) by integrating Ti₃C₂Tₓ MXene with highly space-charged aramid nanofibers. Through geometric engineering and in-plane device integration, these membranes exhibit a strong ionic diode effect, achieving a rectification ratio up to 37-fold, which significantly enhances ionic transport and rectification performance.
2. Achievement of Nearly Full Cation Selectivity and Ultrahigh Energy Conversion Efficiency
The synergy of surface and space charges within the 2D sub-nanofluidic channels renders the MXA membrane nearly fully cation-selective, independent of the applied concentration gradient. This property enables the membrane to achieve an ultrahigh power density of 9.7 W m⁻² and an energy conversion efficiency of approximately 49.8% under a 500 mM/10 mM NaCl gradient, approaching the theoretical upper limit and surpassing existing 2D sub-nanoscale osmotic energy generators.
3. Demonstration of Long-Term Structural and Performance Stability for Practical Application
The proposed device demonstrates exceptional long-term structural and operational stability, maintaining performance for over 140 hours in working solutions. This durability ensures the membrane’s suitability for real-world applications in energy harvesting and advanced separation technologies.
主要貢獻
1. 建立具強整流效應之非對稱二維埃米級離子二極體膜設計
透過結合Ti₃C₂Tₓ MXene與高空間電荷芳香族奈米纖維,建立二維層狀亞奈米流體MXA複合膜,並以幾何工程設計及平面裝置整合,使其展現高達37倍的離子整流比,大幅提升離子傳輸與整流效能。
2. 達成近乎完全陽離子選擇性與超高能量轉換效率
在二維亞奈米通道中,表面電荷與空間電荷的協同作用,使MXA膜在不同濃度梯度下皆能實現近乎全陽離子選擇性。此特性使得膜在500 mM/10 mM NaCl 梯度下可達到9.7 W m⁻²的超高功率密度及約49.8%的能量轉換效率,接近理論極限並超越現有2D亞奈米滲透能量裝置。
3. 展現長時間結構與性能穩定性,具實際應用潛力
所提出之裝置在工作溶液中可維持超過140小時的結構與性能穩定,顯示其於能量收集與先進分離技術等實際應用上的耐久性與可行性。