跳到主要內容區塊

Surface Electric Field Shielding for Passivation-Free Zinc Anode Dissolution in Alkaline Batteries
表面電場屏蔽實現無鈍化鋅負極在鹼性電池中的溶解


Haoyun Wei, Chen Wang, Xiaolu Ye, Ling Gao, Tan Wang, Wei-Hsiang Huang*, Cong Feng, Wei-Sheng Liao, Min-Hsin Yeh*, Guo-Xing Miao, Jing Fu
https://doi.org/10.1002/smll.202502237
SEED Member: Wei-Hsiang Huang, Min-Hsin Yeh

 

Schematic illustration

 

Major Contributions
 

1. Introduction of a Surface Electric Field Shielding Strategy Using Bismuth Faraday Cages
A novel approach is demonstrated by constructing an interwoven bismuth dendrite layer on zinc anodes, functioning as miniature Faraday cages. This structure effectively shields the zinc surface from localized electric fields, thereby reducing current crowding and mitigating the onset of passivation during dissolution in alkaline electrolytes.

2. Achievement of Near-Complete Zinc Utilization and Enhanced Battery Performance in Lean Electrolyte Conditions
The bismuth-shielded zinc anode achieves nearly 100% zinc dissolution and discharge capacities exceeding 100 mAh cm-², even under low alkaline concentration or limited electrolyte volume, where traditional zinc anodes rapidly fail. This demonstrates the method’s practicality for high-energy-density applications and its robustness across various operating conditions.

3. Mechanistic Elucidation and Generalizability of the Shielding Strategy
Through multi-scale characterization and simulations, it is revealed that the bismuth Faraday cage layer dissipates localized electric fields, suppressing Zn(OH)₄²-accumulation and ZnO precipitation at the reaction interface. The strategy is also validated using copper as an alternative shielding material, confirming the general effectiveness of surface electric field shielding for improving zinc anode reversibility and cycling stability in both primary and secondary alkaline batteries.




主要貢獻
 

1. 提出以鉍法拉第籠為核心的表面電場屏蔽策略
本研究創新性地在鋅負極表面構建交織型鉍樹枝狀結構,形成微型法拉第籠,能有效屏蔽局部電場,降低電流擁擠現象,並顯著抑制鹼性電解液中鋅負極的鈍化現象。

2. 在貧液條件下實現近乎完全的鋅利用率與優異電池性能
鉍屏蔽層鋅負極即使在低鹼濃度或有限電解液體積下,亦可實現近100%鋅溶解與超過100 mAh cm⁻²的放電容量,遠優於傳統鋅負極,展現出高能量密度應用的實用性與操作環境的高度適應性。

3. 闡明屏蔽機制並驗證策略的普適性
透過多尺度表徵與模擬,證實鉍法拉第籠可消散局部電場,抑制Zn(OH)₄²⁻累積與ZnO沉積於反應界面。進一步以銅為替代材料進行驗證,證明表面電場屏蔽策略對於提升鋅負極可逆性與循環穩定性具備普適性,適用於一次與二次鹼性電池。