▌Boosted urea electrooxidation activity by dynamic steady blending CoOOH-Ni(OH)2 nanoclusters for H2 production in a pH-asymmetric electrolyzer
透過動態穩定混合CoOOH-Ni(OH)2奈米團簇提升尿素電氧化活性以應用於pH不對稱電解槽產氫
Major Contributions
1. Novel Catalyst Design and Synthesis:
Successfully developed ultra-small (<5 nm) blending CoOOH-Ni(OH)2 nanoclusters through structural transformation of amorphous Co-Ni hydroxide films, achieving superior electrocatalytic performance with a remarkably low onset potential of 1.24V vs. RHE and stable operation over 24 hours in alkaline urea solution.
2. Mechanistic Understanding:
Revealed detailed structural transformation mechanisms using in-situ XAS analysis, HAADF-STEM, and EDS mapping, demonstrating the evolution from amorphous Co-Ni hydroxide to crystalline CoOOH-Ni(OH)2 nanoclusters, with DFT calculations confirming enhanced catalytic activity due to oxygen vacancies.
3. Practical Application Development:
Designed an efficient two-cell pH-asymmetric electrolyzer system achieving remarkable current density of 10 mA cm-2 at only 0.45V applied potential, demonstrating significant reduction in energy consumption for hydrogen production with stable performance.
主要貢獻
1. 新型催化劑設計與合成:
成功通過非晶態Co-Ni氫氧化物薄膜的結構轉變開發超小型(<5 nm)混合CoOOH-Ni(OH)2奈米團簇,在鹼性尿素溶液中實現優異電催化性能,達到極低的起始電位1.24V vs. RHE,並展現24小時以上的穩定操作性能。
2. 機理解析:
運用原位X射線吸收光譜分析、高角環形暗場掃描穿透電子顯微鏡和能量色散X射線光譜等技術,揭示從非晶態Co-Ni氫氧化物到結晶態CoOOH-Ni(OH)2奈米團簇的詳細結構轉變機制,並通過密度泛函理論計算證實氧空缺增強催化活性。
3. 實際應用開發:
設計高效率的雙室pH不對稱電解槽系統,在僅需0.45V施加電位下實現10 mA cm-2的卓越電流密度,展現顯著降低產氫能耗的優異性能。