跳到主要內容區塊

Enhancing Ionic Selectivity and Osmotic Energy by Using an Ultrathin Zr-MOF-Based Heterogeneous Membrane with Trilayered Continuous Porous Structure
使用超薄鋯金屬有機框架異質膜增強離子選擇性和滲透能量,具有三層連續多孔結構


Z.J. Yang, L.H. Yeh*, Y.H. Peng, Y.P. Chuang, K.C.W. Wu*
Angewandte Chemie 2024
https://doi.org/10.1002/anie.202408375
SEED Member: L.H. Yeh

 

We demonstrate a significantly promoted selectivity and blue energy harvesting performance by a novel nanoarchitectured design of a heterogeneous membrane with a trilayered pore structure of large geometry gradient from angstrom-scale to nano-scale to sub-microscale, which is composed of an ultrathin zirconium-based UiO-66-NH2 MOF and a highly aligned branched alumina nanochannel membrane.

 

Major Contributions

1. Innovative Membrane Design for Enhanced Ion Transport :
The study introduces a novel heterogeneous membrane design that incorporates an ultrathin zirconium-based UiO-66-NH2 metal-organic framework (MOF) layer. This layer is integrated onto a branched alumina nanochannel membrane, creating a continuous trilayered pore structure. The design significantly enhances directional ion transport and increases ionic selectivity, which is crucial for efficient osmotic energy conversion.

2. High Power Density and Conversion Efficiency :
The membrane achieves a remarkable power density of approximately 17.1 W/m² with a conversion efficiency of about 48.5% under a 50-fold KCl gradient. This performance surpasses the commercial benchmark and demonstrates the membrane's potential for high-efficiency blue energy harvesting by mixing synthetic seawater and river water.

3. Potential for Advanced Applications :
Beyond energy conversion, this research highlights the potential of zirconium-based MOF channels as ion-channel-mimetic membranes. These membranes can be applied in advanced separation technologies and electrochemical energy devices, paving the way for future innovations in these fields.


主要貢獻

1. 創新膜設計增強離子傳輸 :
研究引入了一種新穎的異質膜設計,結合了超薄鋯基UiO-66-NH2金屬有機框架(MOF)層。該層集成在分支氧化鋁納米通道膜上,形成連續的三層孔結構。這種設計顯著增強了定向離子傳輸並提高了離子選擇性,對於高效滲透能量轉換至關重要。

2. 高功率密度和轉換效率 :
該膜在50倍KCl梯度下實現了約17.1 W/m²的驚人功率密度,轉換效率約為48.5%。這一性能超越了商業基準,展示了通過混合合成海水和河水進行高效藍色能源收集的潛力。

3. 先進應用的潛力 :
除了能量轉換之外,這項研究還強調了鋯基MOF通道作為離子通道模擬膜的潛力。這些膜可以應用於先進的分離技術和電化學能量設備,為這些領域的未來創新鋪平道路。