跳到主要內容區塊

Self-surface heating membrane distillation for sustainable production of freshwater: A state of the art overview
自表面加熱膜蒸餾技術在可持續淡水生產中的應用:最新進展綜述


Authors: T.M. Subrahmanya, H.F.M. Austria, Y.Y. Chen, O. Setiawan, J. Widakdo, M.D. Kurkuri, W.S. Hung*, C.C. Hu, K.R. Lee, J.Y. Lai
Progress in Materials Science, 2024
https://doi.org/10.1016/j.pmatsci.2024.101309
SEED Member: W.S. Hung, C.C. Hu

 

 

 

Major Contributions

1.Proposed Self-Surface Heating Membrane Technology to Enhance Energy Efficiency :
The paper emphasizes the development of self-surface heating membranes, such as photothermal, Joule heating, and induction heating membranes, which localize heat directly at the membrane surface. This approach effectively addresses challenges like temperature polarization (TP) and fouling in traditional membrane distillation (MD) systems, significantly improving thermal efficiency and reducing energy consumption. These innovations make MD technology more sustainable and economically viable.

2.Integration of Nanomaterials to Improve Membrane Performance :
The study highlights the critical role of advanced nanomaterials with photothermal, conductive, and magnetic properties in enhancing the functionality of self-heating membranes. These materials enable efficient energy-to-heat conversion, improve antifouling and antiwetting properties, and facilitate renewable energy integration (e.g., solar or photovoltaic systems), aligning MD technology with global sustainability goals.

3.Comprehensive Analysis of Challenges in Conventional MD Systems :
The paper provides an in-depth review of the limitations of traditional MD systems, such as membrane wetting, fouling, and temperature polarization, which impact energy efficiency and freshwater production. By addressing these issues, the study lays a foundation for designing more robust and efficient MD membranes.

4.Promoting an Interdisciplinary Approach to Advance MD Technology :
The paper underscores the importance of an interdisciplinary strategy that combines materials science, polymer engineering, and process design to advance self-surface heating MD technologies. It explores innovative fabrication methods, module designs, and scalability considerations for these membranes, providing a roadmap for their practical application in desalination and wastewater treatment.


主要貢獻

1.提出自表面加熱膜技術以提升能源效率:
本文強調了自表面加熱膜(例如光熱膜、焦耳加熱膜和感應加熱膜)的發展,這些技術能夠將熱能直接集中於膜表面。此方法有效解決了傳統膜蒸餾(MD)系統中的溫度極化(TP)和污染問題,顯著提升了熱效率並降低了能源消耗,使MD技術更具可持續性和經濟可行性。

2.整合納米材料以改善膜性能:
研究指出,具有光熱、導電和磁性特性的先進納米材料在提升自加熱膜功能方面的關鍵作用。這些材料能高效地將能量轉換為熱能,並增強抗污染和抗潤濕性能。此外,它們還支持與可再生能源(如太陽能光伏系統)的整合,使MD技術符合全球可持續發展目標。

3.全面分析傳統MD系統的挑戰:
本文詳細回顧了傳統MD系統的局限性,例如膜潤濕、污染以及溫度極化對效率和淡水產量的影響。通過針對性地解決這些問題,研究為設計更高效、更穩定的MD膜奠定了基礎。

4.推動跨學科方法以促進MD技術發展:
本文強調採用跨學科策略的重要性,結合材料科學、高分子工程和工藝設計來推動自表面加熱MD技術的進步。研究探討了創新製造方法、模組設計及可擴展性考量,為自表面加熱膜在海水淡化和廢水處理中的實際應用提供了清晰的發展路徑。