跳到主要內容區塊

Cooperative dual single atom Ni/Cu catalyst for highly selective CO2-to-ethanol reduction
用於高選擇性CO2轉化為乙醇的協同雙單原子Ni/Cu催化劑


S.A. Chala*, K. Lakshmanan, W.H. Huang, A.W. Kahsay, C.Y. Chang, F.T. Angerasa, Y.F. Liao, J.F. Lee, H. Dai, M.C. Tsai*, W.N. Su*, B.J. Hwang*
Applied Catalysis B: Environment and Energy 2024
https://doi.org/10.1016/j.apcatb.2024.124420
SEED Member: M.C. Tsai, W.N. Su, B.J. Hwang

 

Integrating atomically dispersed dual heteroactive sites in a catalyst is a promising strategy to cooperatively tune the C-C coupling pathway and improve activity-selectivity. The cooperative entanglement of the dual heteroactive sites Cu-N4/Ni-N3 tunes the selectivity of a single-product and achieves the FE of ethanol 92.2 % at low potential of −0.6 V vs. RHE and dramatically outperforms the catalysts with a single-sites.

 

Major Contributions

1.Achieving Record-High Faradaic Efficiency for CO2-to-Ethanol Conversion
We successfully designed a dual single-atom catalyst (NiCu-SACs/N-C) that achieved an unprecedented Faradaic efficiency (FE) of 92.2% for converting CO2 into ethanol at a moderate potential of -0.6 V versus RHE. This represents the highest FE reported to date for this reaction, significantly advancing the field of electrochemical CO2 reduction.

2.Innovative Catalyst Design with Dual Heteroactive Sites
Our work introduced a novel strategy by integrating atomically dispersed Ni and Cu active sites into a nitrogen-doped carbon matrix. The synergistic interaction between these dual heteroactive sites enhances C-C coupling and ethanol selectivity, outperforming individual single-atom catalysts in both activity and selectivity.

3.Mechanistic Insights through Advanced Characterization Techniques
Using in-operando X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations, we provided detailed mechanistic insights into the catalytic process. We observed dynamic restructuring of Cu clusters during the reaction while Ni sites remained stable, elucidating their respective roles in facilitating CO intermediate formation and subsequent C-C coupling for ethanol production.


主要貢獻

1.實現二氧化碳轉化為乙醇的創紀錄法拉第效率
我們成功設計了一種雙單原子催化劑(NiCu-SACs/N-C),在-0.6 V(相對於RHE)的溫和電位下,實現了高達92.2%的法拉第效率(FE),這是目前已報導中最高的乙醇生成效率。我們的研究顯著推進了電化學二氧化碳還原領域。

2.創新的雙異相活性位點催化劑設計
我們提出了一種新穎策略,將原子分散的鎳(Ni)和銅(Cu)活性位點整合到氮摻雜碳基質中。這些雙異源活性位點之間的協同作用促進了碳-碳偶聯反應(C-C coupling)並提高了乙醇選擇性,性能遠超單一金屬原子催化劑。

3.通過先進表徵技術揭示反應機制
我們利用操作中X射線吸收光譜(in-operando XAS)和密度泛函理論(DFT)計算,深入解析了催化過程機制。我們觀察到銅簇在反應中的動態重構,而鎳位點保持穩定,清楚地闡釋了它們在促進一氧化碳中間體生成及後續C-C偶聯中的關鍵角色。