跳到主要內容區塊

Heteroatom-Coordinated Palladium Molecular Catalysts for Sustainable Electrochemical Production of Hydrogen Peroxide
異原子配位的鈀分子催化劑用於可持續的電化學過氧化氫生產


Authors: Moges, E. A.; Chang, C.-Y.; Huang, W.-H.; Angerasa, F. T.; Lakshmanan, K.; Hagos, T. M.; Edao, H. G.; Dilebo, W. B.; Pao, C.-W.; Tsai, M.-C.W-N. Su, B.J. Hwang*
Journal of Journal of American Chemical Society, 2024
https://pubs.acs.org/doi/10.1021/jacs.3c09644
SEED Member: M-C. Tsai, W-N. Su, B.J. Hwang.

 
 

Major Contributions

1.Development of High-Performance Single-Atom Catalysts for H₂O₂ Production
We successfully synthesized three palladium single-atom catalysts (Pd-N₄-CO, Pd-S₄-NCO, and Pd-N₂O₂-C) using heteroatom-rich ligands. Among these, Pd-N₄-CO demonstrated superior performance for the two-electron oxygen reduction reaction (ORR), achieving over 95% selectivity for hydrogen peroxide (H₂O₂) production across a wide range of potentials with minimal overpotential. This work provides a sustainable and efficient alternative to traditional energy-intensive H₂O₂ production methods.

2.Introduction of the "Push-Pull Mechanism" for Catalyst Design
We proposed a novel "push-pull mechanism" to explain how the coordination of palladium with electronegative donor atoms (e.g., nitrogen and oxygen) optimizes the binding energy of the key intermediate (*OOH). This mechanism enhances H₂O₂ selectivity by suppressing further reduction to water. Our findings offer a theoretical framework for designing molecular catalysts with precise control over reaction pathways.

3.Comprehensive Integration of Experimental and Theoretical Approaches
By combining advanced experimental techniques (e.g., X-ray absorption spectroscopy) with density functional theory (DFT) calculations, we validated the atomic structure and catalytic performance of our materials. These analyses revealed that Pd-N₄ active sites are critical for high selectivity in H₂O₂ production, bridging experimental observations with theoretical insights to guide future catalyst design for green chemical synthesis.


主要貢獻

1.高效單原子催化劑的開發以促進 H₂O₂ 生產
我們成功合成了三種鈀單原子催化劑(Pd-N₄-CO、Pd-S₄-NCO 和 Pd-N₂O₂-C),這些催化劑使用富含異原子的配體製備而成。其中,Pd-N₄-CO 在兩電子氧還原反應(ORR)中展現出卓越的性能,在寬電位範圍內實現了超過 95% 的選擇性,並且具有極低的過電位。這項研究為傳統高能耗的 H₂O₂ 生產方法提供了一種可持續且高效的替代方案。

2.提出“推拉機制”以優化催化劑設計
我們提出了一種新穎的“推拉機制”,解釋鈀與高電負性供體原子(如氮和氧)之間的配位如何優化關鍵中間體 (*OOH) 的鍵合能,從而提高 H₂O₂ 的選擇性並抑制其進一步還原為水。我們的發現為設計具有精確反應路徑控制的分子催化劑提供了理論框架。

3.實驗與理論結合驗證催化劑結構與性能
我們結合了先進的實驗技術(如 X 射線吸收光譜 XANES 和 EXAFS)與密度泛函理論(DFT)計算,驗證了催化劑的原子結構與電催化性能。結果顯示 Pd-N₄ 結構是 H₂O₂ 高選擇性生成的關鍵活性位點,這一綜合方法將實驗觀察與理論洞見相結合,為未來綠色化學合成中的催化劑設計提供了指導。