跳到主要內容區塊

Roles of cation-doped Li-argyrodite electrolytes on the efficiency of all-solid-state-lithium batteries
摻雜陽離子的鋰-硫銀鍺礦電解質對全固態鋰電池效率的影響


B.D. Dandena, D.S. Tsai, S.H. Wu, W.N. Su*, B.J. Hwang*
https://doi.org/10.1016/j.ensm.2024.103305
SEED Member: S.H. Wu, W.N. Su, B.J. Hwang

 

Superionic conductor, (electro)chemically stable and air-stable solid electrolytes are needed to establish a matured battery technology. According to the survey of different research work, cation-doped Li6PS5X (X = Cl, Br, I) electrolytes are proved to enhance the ionic conductivity, interfacial stability with Li metal and air-stability compared to bare Li6PS5X.

 

Major Contributions

1.Advancing Ionic Conductivity through Cation Doping
We demonstrated that cation doping, such as substituting Ge, Si, or Sn into Li-argyrodite structures, significantly enhances ionic conductivity. For instance, Ge-doped Li-argyrodites achieved a record ionic conductivity of 18 mS/cm at room temperature. This improvement stems from increased lattice disorder and expanded unit cell volumes, which facilitate more efficient lithium-ion transport.

2.Lowering Activation Energy for Lithium-Ion Migration
Our research showed that cation doping reduces the activation energy required for lithium-ion migration within solid electrolytes. By introducing dopants like Ge or Si, we observed a substantial decrease in activation energy, enabling faster ion transport and improving the performance of all-solid-state lithium batteries (ASSLBs).

3.Enhancing Interfacial Stability with Lithium Metal Anodes
We addressed the critical challenge of interfacial instability between lithium metal anodes and solid electrolytes. Cation doping mitigates the formation of detrimental by-products (e.g., Li dendrites, LiCl, and Li₂S) at the interface, thereby improving battery lifespan and safety. This contribution is pivotal for realizing practical and durable ASSLBs.


主要貢獻

1.透過陽離子摻雜提升離子電導率
我們證明了陽離子摻雜(例如以Ge、Si或Sn取代Li-argyrodite結構中的部分元素)能顯著提升離子電導率。例如,Ge摻雜的Li-argyrodite在室溫下達到了18 mS/cm 離子電導率。這一改進歸因於晶格無序度的增加以及單位晶胞體積的擴大,這促進了鋰離子的更高效傳輸。

2.降低鋰離子遷移的活化能
我們的研究表明,陽離子摻雜能有效降低固態電解質中鋰離子遷移所需的活化能。通過引入如Ge或Si等摻雜元素,我們觀察到活化能顯著降低,從而加速了離子傳輸並提升了全固態鋰電池(ASSLBs)的整體性能。

3.增強與鋰金屬負極的界面穩定性
我們解決了全固態鋰電池中鋰金屬負極與固態電解質界面不穩定的關鍵挑戰。陽離子摻雜減少了有害副產品(如鋰枝晶、LiCl和Li₂S)的形成,從而改善了電池壽命和安全性。這一貢獻對於實現實用且耐用的全固態鋰電池至關重要。