▌Multiple protective layers for suppressing Li dendrite growth and improving the cycle life of anode-free lithium metal batteries
多層保護結構用於抑制鋰枝晶生長並改善無陽極鋰金屬電池循環壽命
Major Contributions
1.Innovative Dual-Coating Protective Layer Design
We developed a groundbreaking dual-coating protective layer for AFLMBs, consisting of a Sn-coated Cu substrate (Cu-Sn) as the bottom layer and a SrF₂ nanoparticle-reinforced PVDF-HFP polymer as the top layer. This design significantly enhances uniform lithium deposition and suppresses dendrite growth, solving key challenges in AFLMBs. The dual-layer structure also promotes the formation of a LiF-rich solid electrolyte interphase (SEI), which facilitates lithium-ion transport while preventing electron flow.
2.Enhanced Cycling Stability and Interface Engineering
Our dual-layer approach not only stabilizes the electrode interface but also enables long-term cycling stability. The Cu-Sn@SFPH electrode demonstrated remarkable performance, with over 3,200 hours of stable cycling at a capacity of 2 mAh cm⁻². The integration of lithiophilic Li-Sn and Li-Sr alloy layers acts as nucleation seeds for uniform lithium deposition, further improving the electrochemical stability of the system.
3.Practical Application in High-Performance Pouch Cells
We successfully applied our design in anode-free pouch cells using NCM111 cathodes under real-world conditions with lean electrolyte volumes. These cells retained 72.1% capacity after 120 cycles and achieved an average Coulombic efficiency of 99.9%, demonstrating the practical viability of our approach for high-energy-density battery applications.
主要貢獻
1.創新雙層保護結構設計
我們設計了一種創新的雙層保護結構,用於無陽極鋰金屬電池(AFLMBs),包括錫塗覆銅基底(Cu-Sn)作為底層,以及含鍶氟化物(SrF₂)奈米顆粒和PVDF-HFP聚合物的頂層。這種設計顯著改善了鋰沉積的均勻性,並有效抑制鋰枝晶的生長,解決了AFLMBs中鋰枝晶生長和界面不穩定的主要挑戰。
2.提升電化學穩定性與鋰沉積均勻性
我們的雙層結構促進了富含LiF的固態電解質界面(SEI)的形成,該界面在循環過程中加速了鋰離子的傳輸,同時限制電子流動。此外,Cu-Sn和Li-Sr合金層提供了均勻鋰沉積的成核位點,顯著提高了電極的循環穩定性。我們的Cu-Sn@SFPH電極在2 mAh cm⁻²容量下,展現出超過3200小時的穩定循環性能。
3.實際應用中的卓越表現
在實際應用條件下,我們將該設計應用於使用NCM111正極和Cu-Sn@SFPH負極的無陽極袋式電池中。這些電池在120次循環後仍能保持72.1%的容量,且庫倫效率高達99.9%。這表明我們的策略在低電解液量條件下具有實用潛力,有望推動高能量密度儲能設備的發展。